Visual Plumes mixing zone modeling software
نویسنده
چکیده
The US Environmental Protection Agency has a history of developing plume models and providing technical assistance. The Visual Plumes model (VP) is a recent addition to the public-domain models available on the EPA Center for Exposure Assessment Modeling (CEAM) web page. The Windows-based VP adapts, modifies, and enhances the earlier DOS-based PLUMES with a new interface, models, and capabilities. VP is a public platform for mixing zone models designed to encourage the continued improvement of plume theory and models by facilitating verification and inter-model comparison. Some examples are presented to illustrate VP’s new capabilities. One demonstrates its ability, for reasonably one-dimensional estuaries, to estimate background concentrations due to tidal re-circulation of previously contaminated receiving water. This capability depends on the optional linkage to time-series input files that enables VP to simulate mixing zone and far-field parameters for long periods. Also described are the new bacterial decay models used to estimate depth changes in first-order decay rates based on environmental stressors, including solar insolation, salinity, and temperature. The nascent density phenomenon is briefly described as it is potentially important to Outer Continental Shelf (OCS) oil exploration discharges. # 2003 Elsevier Ltd. All rights reserved.
منابع مشابه
Plume statistics in thermal turbulence: mixing of an active scalar.
Statistical properties of the temperature field in turbulent convection are studied experimentally. We show that the skewness of the plus and minus temperature increments can be used to quantitatively characterize the mixing zone in the convective flow and the result reveals how the mixing zone evolves with the Rayleigh number. We also present evidence for the saturation of the temperature stru...
متن کاملOn the miscible Rayleigh-Taylor instability: two and three dimensions
We investigate the miscible Rayleigh-Taylor (RT) instability in both 2 and 3 dimensions using direct numerical simulations, where the working fluid is assumed incompressible under the Boussinesq approximation. We first consider the case of randomly perturbed interfaces. With a variety of diagnostics, we develop a physical picture for the detailed temporal development of the mixed layer: We iden...
متن کاملModeling Multiple-Core Updraft Plume Rise for an Aerial Ignition Prescribed Burn by Coupling Daysmoke with a Cellular Automata Fire Model
Smoke plume rise is critically dependent on plume updraft structure. Smoke plumes from landscape burns (forest and agricultural burns) are typically structured into “sub-plumes” or multiple-core updrafts with the number of updraft cores depending on characteristics of the landscape, fire, fuels, and weather. The number of updraft cores determines the efficiency of vertical transport of heat and...
متن کاملDynamics of fire plumes and smoke clouds associated with peat and deforestation fires in Indonesia
[1] During the dry season, anthropogenic fires in tropical forests and peatlands of equatorial Asia produce regionally expansive smoke clouds that have important effects on atmospheric radiation and air quality. Here we estimated the height of smoke on Borneo and Sumatra and characterized its sensitivity to El Niño and regional drought. We used Multiangle Imaging Spectroradiometer (MISR) satell...
متن کاملShape of thermal plumes in a compressible mantle with depth-dependent viscosity
[1] The mantle plume model has been invoked to explain the formation of large igneous provinces (LIP) and associated age-progressive hotspot tracks. The shape of mantle plumes should be significantly altered by physical properties of the mantle and will influence how plume theory is used to interpret observational constraints. Based on theoretical analysis and numerical modeling, we explore the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Environmental Modelling and Software
دوره 19 شماره
صفحات -
تاریخ انتشار 2004